Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil





Modelo de aprendizaje automático descubre la predisposición genética a la COVID-19 severa

Por el equipo editorial de LabMedica en español
Actualizado el 25 Feb 2021
Investigadores de la Universidad HSE (Moscú, Rusia) se convirtieron en los primeros en el mundo en descubrir la predisposición genética a la COVID-19 grave, utilizando un modelo de aprendizaje automático.

La inmunidad de las células T es uno de los mecanismos clave que utiliza el cuerpo humano para combatir las infecciones por virus. Más...
La base de estadificación para el desarrollo de la inmunidad celular es la presentación de péptidos de virus a la superficie de las células infectadas. A esto le sigue la activación de los linfocitos T, que comienzan a matar las células infectadas.

La capacidad de presentar con éxito péptidos de virus está determinada en gran medida por la genética. En las células humanas, las moléculas de antígeno leucocitario humano de clase I (HLA-I) son responsables de esta presentación. El conjunto de seis de estas moléculas es único en cada ser humano y se hereda de los padres del individuo. En términos simples, si el conjunto de alelos detecta bien el virus, entonces las células inmunes detectarán y destruirán las células infectadas rápidamente; si una persona tiene un equipo malo para tal detección, es más probable que se observe un caso más grave de enfermedad.

Los investigadores estudiaron la interconexión entre el genotipo HLA-I y la gravedad de la COVID-19. Usando el aprendizaje automático, construyeron un modelo que proporciona una evaluación integral del posible poder de la respuesta inmune de las células T a la COVID-19: si el conjunto de alelos HLA-I permite la presentación efectiva de los péptidos del virus del SARS-CoV-2, esos individuos recibían una puntuación de riesgo baja, mientras que las personas con menor capacidad de presentación recibieron puntuaciones de riesgo más altas (en el rango de 0 a 100). Para validar el modelo, se analizaron los genotipos de más de 100 pacientes que habían padecido COVID-19 y más de 400 personas sanas (el grupo de control). Resultó que la puntuación de riesgo modelada es muy eficaz para predecir la gravedad de la COVID-19.

Además de analizar la población de Moscú, los investigadores utilizaron su modelo en una muestra de pacientes de Madrid, España. La alta precisión de la predicción también se confirmó en esta muestra independiente: la puntuación de riesgo de los pacientes que padecían COVID-19 grave fue significativamente más alta que en los pacientes con casos moderados y leves de la enfermedad.

“Además de las correlaciones descubiertas entre el genotipo y la gravedad de la COVID-19, el método sugerido también ayuda a evaluar cómo una determinada mutación de COVID-19 puede afectar el desarrollo de la inmunidad de las células T al virus. Por ejemplo, podremos detectar grupos de pacientes para quienes la infección con nuevas cepas de SARS-CoV-2 puede conducir a formas más graves de la enfermedad”, dijo Alexander Tonevitsky, investigador de la Facultad de Biología y Biotecnología de la HSE.

Enlace relacionado:
Universidad HSE


Miembro Platino
Prueba de actividad proteasa ADAMTS-13
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
Miembro Oro
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.