Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
BIO-RAD LABORATORIES

Deascargar La Aplicación Móvil




Desarrollan método rápido para identificar bacterias en muestras de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 02 Mar 2017
En el diagnóstico clínico y la detección de patógenos, el análisis de muestras complejas para determinar genotipos de bajo nivel representa un desafío significativo. Se necesitan avances en velocidad, sensibilidad y extensión de multiplexación de los ensayos de detección de patógenos moleculares para mejorar el cuidado de los pacientes.
 
Se ha desarrollado una herramienta de diagnóstico, de escritorio, que detecta la presencia de bacterias dañinas en una muestra de sangre en cuestión de horas en lugar de días. La herramienta fue hecha posible gracias a una combinación de una química patentada, una ingeniería eléctrica innovadora y la y imagenología de alta gama, además de técnicas de análisis impulsadas por el aprendizaje automático.
 
Los bioingenieros de la Universidad de California en San Diego (La Jolla, CA, EUA) extrajeron y purificaron sangre de una muestra clínica conocida como negativa para bacterias. Se añadieron aproximadamente 2.000 genomas de Listeria monocytogenes a la extracción de sangre purificada. Luego se agregó la cantidad máxima de sangre y de mezcla de ADN bacteriano (8,63 μL), a la mezcla maestra de reacción en cadena de la polimerasa (PCR). El ADN se colocó entonces en un chip digital que permitía que cada pieza se multiplicara independientemente en su propia reacción pequeña. Para que el proceso funcionara a tan pequeñas escalas, cada pozo, que contenía ADN en el chip, tenía sólo 20 pL de volumen.
 
Se usó un termociclador PTC-200 de MJ Research (MJ Research, Waltham, MA, EUA), para la amplificación de los puntos finales. Los ingenieros tomaron imágenes del proceso de fusión con el microscopio de alto rendimiento y las imágenes fluorescentes se obtuvieron utilizando una plataforma Nikon Eclipse Ti (Nikon, Melville, NY, EUA) y fueron capaces de capturar las curvas de fusión de las bacterias. A continuación, analizaron las curvas con un algoritmo de aprendizaje de máquinas que desarrollaron. En un trabajo anterior, el algoritmo había sido entrenado en 37 tipos diferentes de bacterias que experimentaban diferentes reacciones en diferentes condiciones. Los científicos demostraron que era capaz de identificar las cepas bacterianas con un 99% de exactitud y, por el contrario, la tasa de error de los métodos tradicionales puede ser de hasta 22,6%.
 
El equipo concluyó que las curvas de fusión resultantes, específicas para las bacterias, son identificadas mediante el aprendizaje automático de soporte vectorial y que se pueden cuantificar las cargas de patógenos individuales. La plataforma reduce los volúmenes de reacción en un 99,995% y alcanza un aumento de más de 200 veces en el intervalo dinámico de detección en comparación con los métodos tradicionales de PCR de alta resolución de fusión (HRM). El estudio fue publicado el 8 de febrero de 2017, en la revista Scientific Reports.
 
Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.