Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas

Por el equipo editorial de LabMedica en español
Actualizado el 03 Apr 2025
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)
Imagen: el modelo AI identifica con precisión las mutaciones genéticas dañinas para diagnósticos y tratamientos precisos (foto cortesía de 123RF)

En los últimos años, la inteligencia artificial (IA) ha mejorado considerablemente nuestra capacidad para identificar un gran número de variantes genéticas en poblaciones cada vez más numerosas. Sin embargo, hasta la mitad de estas variantes se clasifican como de significado incierto, lo que indica que su papel en la causa de una enfermedad, si lo hay, sigue sin estar claro. Los modelos de IA existentes son eficaces para distinguir qué variantes genéticas tienen mayor probabilidad de afectar negativamente la estructura o función de las proteínas, lo que podría provocar enfermedades. Sin embargo, estos modelos carecen de la capacidad de vincular una variante genética específica con una enfermedad en particular, lo que limita su utilidad en el diagnóstico y el tratamiento. Ahora, investigadores han desarrollado un nuevo modelo de IA capaz de identificar con precisión mutaciones genéticas dañinas para llegar a diagnósticos y tratamientos más precisos.

El novedoso modelo de IA, denominado DYNA, fue desarrollado por investigadores de Cedars-Sinai (Los Ángeles, CA, EUA) y diferencia con precisión entre variaciones genéticas dañinas e inocuas, lo que mejora la capacidad de los médicos para diagnosticar enfermedades. Esta nueva herramienta tiene el potencial de allanar el camino hacia una medicina más específica y personalizada. En una investigación publicada en la revista Nature Machine Intelligence, revisada por pares, el equipo demostró que DYNA supera a los modelos de IA existentes en la predicción de qué cambios en el ADN, comúnmente conocidos como mutaciones, están relacionados con afecciones cardiovasculares específicas y otras enfermedades.

Para crear DYNA, los investigadores emplearon un tipo de IA llamada red neuronal siamesa para refinar dos modelos de IA existentes. Estos modelos modificados se utilizaron para predecir la probabilidad de que variantes genéticas específicas se asocien con afecciones como la miocardiopatía (agrandamiento, endurecimiento o debilitamiento del músculo cardíaco) y la arritmia (latidos cardíacos irregulares). Posteriormente, el equipo comparó los resultados de DYNA con datos de ClinVar, una prestigiosa base de datos pública que recopila informes de variaciones genéticas relacionadas con enfermedades. La comparación reveló que DYNA correlacionó correctamente las variantes genéticas con las enfermedades correspondientes.

“Para los investigadores, DYNA ofrece un marco flexible para estudiar diversas enfermedades genéticas”, afirmó el Dr. Jason Moore, autor colaborador del estudio y director del Departamento de Biomedicina Computacional de Cedars-Sinai. “En el futuro, se podría usar DYNA para ofrecer a los profesionales sanitarios herramientas avanzadas que permitan adaptar los diagnósticos y tratamientos al perfil genético de cada individuo”.

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
Miembro Oro
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.