Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Nanocubos de plata facilitan las lecturas de los diagnósticos para los puntos de atención

Por el equipo editorial de LabMedica en español
Actualizado el 25 May 2020
Imagen: Diagrama esquemático de la lectura de fluorescencia ultrabrillante de un inmunoensayo impreso por inyección de tinta utilizando cavidades nanogap plasmónicas (Fotografía cortesía de la Universidad de Duke).
Imagen: Diagrama esquemático de la lectura de fluorescencia ultrabrillante de un inmunoensayo impreso por inyección de tinta utilizando cavidades nanogap plasmónicas (Fotografía cortesía de la Universidad de Duke).
La plasmónica es un campo científico que atrapa energía en un circuito de retroalimentación llamado plasmón y la transfiere a la superficie de los nanocubos de plata. Cuando las moléculas fluorescentes se intercalan entre uno de estos nanocubos y una superficie metálica, la interacción entre sus campos electromagnéticos hace que las moléculas emitan luz mucho más vigorosamente.

Los microarrays basados en fluorescencia son herramientas de diagnóstico prometedoras debido a su alto rendimiento, pequeños requisitos de volumen de muestra y capacidades de multiplexación. Sin embargo, su baja producción de fluorescencia ha limitado su implementación para aplicaciones de diagnóstico in vitro en entornos de puntos de atención (POC).

Los ingenieros biomédicos y sus colegas de la Universidad de Duke (Durham, NC, EUA), construyeron su plataforma de diagnóstico súper sensible llamada Ensayo D4 sobre una delgada película de oro, el yin preferido del yang del nanocubo de plata plasmónica. La plataforma comienza con una capa delgada de recubrimiento de cepillo de polímero, que evita que cualquier cosa se adhiera a la superficie dorada que los científicos no quieren pegar allí. Luego usan una impresora de inyección de tinta para unir dos grupos de moléculas diseñadas para engancharse al biomarcador que la prueba trata de detectar. Un conjunto está unido permanentemente a la superficie dorada y atrapa una parte del biomarcador. El otro se lava de la superficie una vez que comienza la prueba, se adhiere a otra pieza del biomarcador y parpadea para indicar que ha encontrado su objetivo.

Mediante la integración de un microarray de inmunoensayo tipo sándwich dentro de una cavidad de nanogap plasmónica, los bioingenieros demostraron una fluorescencia fuertemente mejorada que es crítica para la lectura por detectores POC de bajo costo. El inmunoensayo consiste en anticuerpos impresos por inyección de tinta en un cepillo de polímero que se cultiva en una película de oro. Los nanocubos de plata sintetizados coloidalmente se colocan en la parte superior e interactúan con la película de oro subyacente creando mejoras altas en el campo electromagnético local. Al variar el grosor del cepillo de 5 a 20 nm, se observa un aumento de hasta 151 veces en la fluorescencia y una mejora de 14 veces en el límite de detección para el biomarcador cardíaco, el péptido natriurético (BNP) de tipo B, en comparación con el ensayo no mejorado, allanando el camino para una nueva generación de diagnósticos clínicos de POC.

Maiken H. Mikkelsen, PhD, profesor asistente y autor principal del estudio, dijo: “Uno de los grandes desafíos en las pruebas de punto de atención es la capacidad de leer los resultados, que generalmente requieren detectores muy caros. Ese es un obstáculo importante para tener pruebas desechables que permitan a los pacientes hacer el seguimiento de enfermedades crónicas en el hogar o para usar en entornos de bajos recursos. Vemos esta tecnología, no solo como una forma de sortear ese cuello de botella, sino también como una forma de mejorar la exactitud y el umbral de estos dispositivos de diagnóstico”. El estudio fue publicado el 5 de mayo de 2020 en la revista Nano Letters.

Enlace relacionado:
Universidad de Duke

Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
PRUEBA DE EMBARAZO DE SANGRE COMPLETA HCG
VEDALAB hCG-CHECK-1

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.