Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Inteligencia artificial ayuda a identificar cáncer de piel precoz

Por el equipo editorial de LabMedica en español
Actualizado el 26 Sep 2017
Image
Image
Una nueva tecnología utiliza la inteligencia artificial (IA) para ayudar a detectar el cáncer de piel, melanoma, antes que los métodos actuales y para ayudar a reducir el número de biopsias innecesarias. El método basado en la IA emplea software de aprendizaje automático para analizar imágenes de lesiones de la piel y proporcionar a los médicos datos objetivos sobre biomarcadores reveladores para él melanoma.

Alexander Wong, profesor de la Universidad de Waterloo (Waterloo, Canadá), dijo: “Esto podría ser una herramienta muy poderosa para tomar decisiones clínicas en el cáncer de piel”. “Entre más interpretable sea la información, mejores son las decisiones que se pueden tomar”. El profesor Wong desarrolló la tecnología en colaboración con Daniel Cho, un antiguo estudiante de doctorado en Waterloo, con David Clausi, profesor en Waterloo, y con Farzad Khalvati, un profesor adjunto en Waterloo y científico en Sunnybrook.

Actualmente, los dermatólogos dependen, en gran medida, de exámenes visuales subjetivos de las lesiones cutáneas (por ejemplo, lunares) para decidir si a los pacientes les deben practicar biopsias para diagnosticar la enfermedad. El nuevo sistema descifra los niveles de sustancias biomarcadoras en las lesiones, agregando información consistente y cuantitativa a las evaluaciones basadas actualmente sólo en la apariencia visual. En particular, los cambios en la concentración y distribución de la eumelanina (le da color a la piel) y de la hemoglobina son fuertes indicadores de melanoma.

“Puede haber un gran tiempo muerto antes de que los médicos incluso sepan qué le pasa al paciente”, dijo el Prof. Wong, “Nuestro objetivo es acortar ese proceso”. El sistema de IA se encontró usando decenas de miles de imágenes de la piel y sus niveles correspondientes de eumelanina y de hemoglobina. Proporciona a los médicos información objetiva sobre las características de las lesiones para ayudarles a identificar o descartar el melanoma antes de decidir si deben tomar una acción más invasiva. La tecnología podría estar disponible para los médicos a partir de 2018.

La investigación fue presentada recientemente en el 14° Congreso Internacional sobre Análisis y Reconocimiento de Imágenes (ICIAR 2017, 5 al 7 de julio de 2017, Montreal, Canadá).

Miembro Platino
Prueba de actividad proteasa ADAMTS-13
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
PRUEBA DE EMBARAZO DE SANGRE COMPLETA HCG
VEDALAB hCG-CHECK-1

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.