Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Solución de aprendizaje automático ayuda a los patólogos a detectar lesiones cervicales precancerosas

Por el equipo editorial de LabMedica en español
Actualizado el 21 Jun 2023

El cáncer de cuello uterino se ubica como el cuarto cáncer más prevalente en las mujeres, con 604. Más...

000 nuevos casos informados en 2020, según la Organización Mundial de la Salud (OMS). Sin embargo, se destaca como uno de los cánceres más prevenibles y tratables, siempre que se detecte a tiempo y se maneje adecuadamente. Por lo tanto, la detección temprana de lesiones precancerosas es fundamental para la prevención de enfermedades. Ahora, los investigadores han desarrollado un método innovador que utiliza imágenes grandes de alta resolución para detectar lesiones precancerosas importantes.

Un equipo de investigadores de INESC TEC (Oporto, Portugal) e IMP Diagnostics (Oporto, Portugal) ha diseñado una solución de aprendizaje automático para ayudar a los patólogos a detectar la displasia cervical, haciendo que el proceso de diagnóstico de nuevas muestras sea completamente automático. Este es uno de los primeros trabajos publicados en utilizar portaobjetos completos. Los investigadores se propusieron desarrollar modelos de aprendizaje automático para respaldar la clasificación subjetiva de lesiones en el epitelio escamoso, la capa protectora del tejido contra los microorganismos, utilizando imágenes de portaobjetos completas (WSI) que contienen información de todo el tejido.

El equipo desarrolló una metodología poco supervisada: un método de aprendizaje automático que combina datos anotados y no anotados en la fase de entrenamiento del modelo para clasificar la displasia cervical. Esta técnica resulta particularmente beneficiosa considerando la dificultad de obtener anotaciones de datos patológicos: los grandes tamaños de imagen hacen que el proceso de anotación sea extremadamente laborioso, tedioso y muy subjetivo. Esta metodología permite a los investigadores establecer modelos con alto rendimiento, incluso cuando hay información faltante durante la fase de entrenamiento. El modelo resultante puede clasificar la displasia cervical, o el crecimiento anormal de células en la superficie, como lesiones escamosas intraepiteliales de grado bajo (LSIL) o alto (HSIL). Dada la complejidad y la naturaleza subjetiva del proceso de clasificación, estos modelos de aprendizaje automático pueden brindar una valiosa ayuda a los patólogos. Además, estos sistemas podrían actuar como un mecanismo de alerta temprana para casos sospechosos, alertando a los patólogos sobre casos que ameriten un examen más detallado.

“En la detección de displasia cervical, este fue uno de los primeros trabajos publicados que utiliza los portaobjetos completos, siguiendo un método que incluye la segmentación y posterior clasificación de las áreas de interés, haciendo completamente automático el diagnóstico de nuevas muestras”, explica Sara Oliveira, investigadora del INESC TEC.

Enlaces relacionados:
INESC TEC  
IMP Diagnostics


Miembro Platino
Prueba de actividad proteasa ADAMTS-13
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
Prueba de procalcitonina
LIAISON B•R•A•H•M•S PCT II GEN
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.