Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Avances en IA permiten el salto a la patología 3D

Por el equipo editorial de LabMedica en español
Actualizado el 29 May 2024

El tejido humano es complejo, intrincado y naturalmente tridimensional. Más...

Sin embargo, las finas rodajas de tejido bidimensionales que suelen utilizar los patólogos para diagnosticar enfermedades proporcionan sólo una visión limitada de toda la complejidad del tejido. Como resultado, existe una tendencia creciente en patología hacia el examen del tejido en su forma tridimensional. Desafortunadamente, los conjuntos de datos de patología 3D pueden contener muchos más datos que sus homólogos 2D, lo que hace que el análisis manual no sea práctico. Ahora, los investigadores han desarrollado nuevos modelos de aprendizaje profundo capaces de utilizar conjuntos de datos de patología en 3D para predecir resultados clínicos.

Tripath, desarrollado por investigadores de Mass General Brigham (Somerville, MA, EUA) y sus colaboradores, tiene como objetivo superar los desafíos computacionales del procesamiento de tejido 3D y la predicción de resultados basados en características morfológicas 3D. En su estudio, el equipo utilizó dos técnicas de imágenes 3D de alta resolución para capturar imágenes de muestras seleccionadas de cáncer de próstata. Estos modelos fueron entrenados para evaluar el riesgo de recurrencia del cáncer de próstata mediante biopsias volumétricas de tejido humano.

Tripath ha demostrado un rendimiento superior en comparación con los patólogos tradicionales y ha superado a los modelos de aprendizaje profundo existentes que se basan en morfología 2D y cortes finos de tejido, al capturar de manera integral morfologías 3D de todo el volumen de tejido. Si bien es necesaria una mayor validación en conjuntos de datos más grandes antes de que este enfoque innovador pueda avanzar hacia la aplicación clínica, el equipo de investigación sigue siendo optimista sobre su potencial para mejorar la toma de decisiones clínicas.

"Nuestro enfoque subraya la importancia de analizar exhaustivamente todo el volumen de una muestra de tejido para una predicción precisa del riesgo del paciente, que es el sello distintivo de los modelos que desarrollamos y que sólo es posible con el paradigma de patología 3D", dijo el autor principal, Andrew H. Song, PhD. , de la División de Patología Computacional del Departamento de Patología del Mass General Brigham.

Enlaces relacionados:
Mass General Brigham


Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.