Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ZeptoMetrix an Antylia scientific company

Deascargar La Aplicación Móvil




Herramienta de inteligencia artificial autodidacta diagnostica y predice la gravedad del cáncer de pulmón común

Por el equipo editorial de LabMedica en español
Actualizado el 20 Jun 2024

Un programa informático impulsado por inteligencia artificial (IA) y entrenado con casi medio millón de imágenes de tejidos puede diagnosticar eficazmente casos de adenocarcinoma, el tipo más prevalente de cáncer de pulmón. Más...

El programa informático desarrollado y probado por investigadores de NYU Langone Health (Nueva York, NY, EUA) y la Universidad de Glasgow (Glasgow, Reino Unido) proporciona una segunda opinión imparcial, detallada y confiable para pacientes y oncólogos sobre la presencia del cáncer y la posibilidad de su regreso. Esto se debe a que el programa incorpora características estructurales de tumores de 452 pacientes con adenocarcinoma, que se encuentran entre los más de 11.000 pacientes del Atlas del Genoma del Cáncer del Instituto Nacional del Cáncer de EUA. Es importante destacar que el programa funciona de forma independiente y es "autodidacta", decidiendo por sí mismo qué características estructurales son más críticas para evaluar la gravedad de la enfermedad y su impacto en la recurrencia del tumor.

En su investigación, el algoritmo, conocido como aprendizaje de fenotipo histomorfológico (HPL), diferenció con éxito entre adenocarcinoma y tipos similares de cáncer de pulmón, como los cánceres de células escamosas, con una precisión del 99 %. El programa HPL también demostró una tasa de precisión del 72  % en la predicción de la probabilidad y el momento de la recurrencia del cáncer después del tratamiento, superando la precisión del 64 % lograda por los patólogos que analizaron las mismas imágenes del tumor manualmente. El equipo de investigación prevé que, con avances continuos en la comprensión de la biología del cáncer de pulmón, los patólogos revisarán cada vez más muestras de tejido en su computadora en lugar de mediante la microscopía tradicional y emplearán su programa de inteligencia artificial para analizar y visualizar más a fondo estas exploraciones.

Los investigadores pretenden utilizar el algoritmo HPL para asignar a cada paciente una puntuación de 0 a 1 que refleje su probabilidad estadística de supervivencia y recurrencia del tumor durante un máximo de cinco años. Destacan que la naturaleza de autoaprendizaje de HPL significa que la precisión del programa mejorará a medida que procese más datos con el tiempo. El equipo ahora busca desarrollar programas similares basados en inteligencia artificial para otros tipos de cáncer, como el de mama, ovario y colorrectal, que también incorporarán datos morfológicos y moleculares clave. También hay planes en marcha para mejorar la precisión del programa HPL de adenocarcinoma mediante la integración de datos adicionales de los registros médicos electrónicos de los hospitales, incluida información sobre otras enfermedades, niveles de ingresos y códigos postales residenciales.

"Nuestro nuevo programa de aprendizaje de fenotipo histomorfológico tiene el potencial de ofrecer a los especialistas en cáncer y a sus pacientes una herramienta de diagnóstico rápida e imparcial para el adenocarcinoma de pulmón que, una vez que se completen las pruebas adicionales, también se puede utilizar para ayudar a validar e incluso guiar sus decisiones de tratamiento", dijo Nicolas Coudray, PhD, programador de bioinformática de la Facultad de Medicina Grossman de la Universidad de Nueva York y el Centro Oncológico Perlmutter. "Los pacientes, médicos e investigadores saben que pueden confiar en este modelo predictivo porque es autodidacta, proporciona decisiones explicables y se basa únicamente en el conocimiento extraído específicamente del tejido de cada paciente, incluidas características tales como su proporción de células moribundas y células inmunes que combaten tumores y qué tan densamente empaquetadas están las células tumorales”. El estudio fue publicado en Nature Communications el 11 de junio de 2024.

Enlaces relacionados:
Salud Langone de la Universidad de Nueva York
Universidad de Glasgow


Miembro Platino
Prueba de actividad proteasa ADAMTS-13
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
Miembro Oro
PRUEBA DE EMBARAZO DE SANGRE COMPLETA HCG
VEDALAB hCG-CHECK-1
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.