Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
INTEGRA BIOSCIENCES AG

Deascargar La Aplicación Móvil




Método de tinción de tejidos basado en IA detecta depósitos de amiloide sin necesidad de tinciones químicas ni microscopía de polarización

Por el equipo editorial de LabMedica en español
Actualizado el 25 Sep 2024
Imágenes de birrefringencia virtual y tinción histológica de depósitos de amiloide en tejido sin marcadores (Foto cortesía del Grupo de Investigación Ozcan)
Imágenes de birrefringencia virtual y tinción histológica de depósitos de amiloide en tejido sin marcadores (Foto cortesía del Grupo de Investigación Ozcan)

La amiloidosis sistémica, un trastorno caracterizado por la acumulación de proteínas mal plegadas en órganos y tejidos, presenta importantes dificultades de diagnóstico. La condición afecta a millones de personas cada año, a menudo resultando en daño orgánico severo, insuficiencia cardíaca y altas tasas de mortalidad si no se diagnostica y trata a tiempo. Tradicionalmente, la detección de depósitos de amiloide se ha basado en la tinción con rojo Congo observada con microscopio de luz polarizada, que se ha considerado el método de referencia. Sin embargo, este método requiere mucho tiempo, es costoso y tiende a presentar variabilidad, lo que puede dar lugar a diagnósticos erróneos. Ahora, los investigadores han desarrollado un método innovador para obtener imágenes y detectar depósitos de amiloide en muestras de tejido. Este enfoque innovador utiliza el aprendizaje profundo y la microscopía de autofluorescencia para crear imágenes de birrefringencia virtual y tinción histológica, eliminando la necesidad de imágenes de polarización y tinciones tradicionales como el rojo Congo.

La nueva técnica, descrita en la revista Nature Communications y desarrollada por investigadores de la Universidad de California en Los Ángeles (UCLA, Los Ángeles, CA, EUA), emplea una única red neuronal para convertir imágenes de autofluorescencia de tejido no teñido en imágenes de microscopía polarizada y de campo claro de alta resolución. Estas imágenes se parecen a las producidas por tinción histoquímica convencional y microscopía de polarización. El método fue probado en muestras de tejido cardíaco y demostró que las imágenes virtualmente teñidas identificaron de manera consistente y precisa los patrones de amiloide. Este enfoque elimina la necesidad de tinción química y microscopios de polarización especializados, lo que potencialmente acelera el diagnóstico y reduce los costos. El proceso de tinción virtual igualó e incluso superó la calidad de los métodos tradicionales, como lo confirmaron varios patólogos certificados por la junta de UCLA.

Los resultados del estudio indican que esta técnica de tinción virtual podría incorporarse fácilmente a los flujos de trabajo clínicos actuales, fomentando un uso más amplio de la patología digital. El método no requiere componentes ópticos especializados y puede implementarse en escáneres de patología digital estándar, aciéndolo accesible para una amplia gama de instalaciones de salud. Los investigadores planean ampliar sus evaluaciones a otros tipos de tejidos, incluidos el riñón, el hígado y el bazo, para validar aún más la eficacia de la técnica en varias formas de amiloidosis. También tienen como objetivo desarrollar sistemas de detección automatizados para ayudar a los patólogos a identificar regiones problemáticas, lo que podría mejorar la precisión del diagnóstico y minimizar los falsos negativos.

“Nuestro modelo de aprendizaje profundo puede realizar transformaciones de imagen tanto de autofluorescencia a birrefringencia como de autofluorescencia a campo claro, lo que ofrece una alternativa confiable, consistente y rentable a los métodos de histología tradicionales. Este avance podría mejorar en gran medida la velocidad y precisión del diagnóstico de amiloidosis, reduciendo el riesgo de falsos negativos y mejorando los resultados de los pacientes”, afirmó el Dr. Aydogan Ozcan, autor principal del estudio y titular de la Cátedra Volgenau de Innovación en Ingeniería en la UCLA. “Esta innovación representa un avance significativo en el campo de la patología de la amiloidosis. No solo simplifica el proceso de diagnóstico, sino que también tiene potencial para expandir el uso de la patología digital en la práctica clínica habitual, en particular en entornos con recursos limitados”.

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
Miembro Oro
PRUEBA DE EMBARAZO DE SANGRE COMPLETA HCG
VEDALAB hCG-CHECK-1

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.