Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ZeptoMetrix an Antylia scientific company

Deascargar La Aplicación Móvil




Análisis de células inmunes mediante IA predice pronóstico del cáncer de mama

Por el equipo editorial de LabMedica en español
Actualizado el 20 Nov 2024
Imagen: Los hallazgos del estudio sugieren que los linfocitos infiltrantes de tumores son un biomarcador robusto de cáncer de mama (Foto cortesía de Shutterstock)
Imagen: Los hallazgos del estudio sugieren que los linfocitos infiltrantes de tumores son un biomarcador robusto de cáncer de mama (Foto cortesía de Shutterstock)

Los linfocitos infiltrantes de tumores (TIL) son células inmunitarias cruciales para combatir el cáncer. Su presencia en un tumor indica que el sistema inmunitario está intentando atacar y eliminar las células cancerosas. Los TIL pueden ser indicadores importantes para predecir cómo responderán las pacientes con cáncer de mama triple negativo al tratamiento y cómo podría progresar la enfermedad. Sin embargo, la evaluación de estas células inmunitarias puede arrojar resultados inconsistentes. La inteligencia artificial (IA) tiene el potencial de estandarizar y automatizar este proceso, pero demostrar su eficacia para el uso en la atención médica ha sido un desafío. Ahora, los investigadores han explorado cómo diferentes modelos de IA pueden predecir el pronóstico del cáncer de mama triple negativo analizando células inmunitarias específicas dentro del tumor. Este estudio, publicado en eClinicalMedicine, representa un paso significativo hacia la incorporación de la IA en la atención oncológica para mejorar los resultados de los pacientes.

Investigadores del Instituto Karolinska (Estocolmo, Suecia) probaron diez modelos de IA diferentes para evaluar su capacidad de analizar los linfocitos infiltrantes de tumores en muestras de tejido de pacientes con cáncer de mama triple negativo. Los resultados revelaron que el rendimiento de los modelos de IA variaba, pero ocho de los diez modelos demostraron una fuerte capacidad de pronóstico, lo que significa que podían predecir los resultados de salud de los pacientes con una precisión similar. Incluso los modelos entrenados en conjuntos de datos más pequeños mostraron resultados prometedores, lo que sugiere que los linfocitos infiltrantes de tumores son un biomarcador confiable. El estudio destaca la necesidad de grandes conjuntos de datos para comparar diferentes modelos de IA y validar su eficacia antes de que puedan usarse en la práctica clínica. Aunque los hallazgos son prometedores, se requiere una mayor validación.

“Nuestra investigación destaca la importancia de los estudios independientes que imitan la práctica clínica real”, afirmó Balazs Acs, investigador del Departamento de Oncología y Patología del Instituto Karolinska. “Solo a través de este tipo de pruebas podemos garantizar que las herramientas de IA sean fiables y eficaces para el uso clínico”.

Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
Blood Glucose Reference Analyzer
Nova Primary

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.