Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Tecnología de código de barras diagnostica el cáncer con mayor precisión

Por el equipo editorial de LabMedica en español
Actualizado el 23 Nov 2024
Imagen: Patho-DBiT revela la arquitectura de tejido a nivel celular de una muestra agresiva de linfoma gástrico almacenada durante 3 años (Foto cortesía de Yale)
Imagen: Patho-DBiT revela la arquitectura de tejido a nivel celular de una muestra agresiva de linfoma gástrico almacenada durante 3 años (Foto cortesía de Yale)

Una nueva herramienta patológica que utiliza tecnología de código de barras muestra potencial para su uso en el diagnóstico del cáncer.

Desarrollada en la Facultad de Medicina de Yale (New Haven, Connecticut, EUA), esta herramienta, llamada Patho-DBiT (código de barras determinista compatible con patología en tejidos), aprovecha el código de barras del ADN para mapear las relaciones espaciales entre el ARN y las proteínas, lo que permite un examen exhaustivo del ARN, algunos de cuyos tipos desempeñan funciones reguladoras en el cáncer. La innovación radica en el uso de dispositivos microfluídicos que envían códigos de barras al tejido desde dos direcciones, creando un "mosaico" 2D único de píxeles. Este mosaico proporciona información espacial que podría ser crucial para desarrollar terapias dirigidas específicas para cada paciente.

En su estudio publicado en la revista Cell, los investigadores explican cómo Patho-DBiT podría desbloquear una gran cantidad de información conservada en muestras de biopsia de tejido. Las posibles aplicaciones futuras de esta tecnología incluyen la creación de terapias dirigidas y la comprensión de los mecanismos detrás de la transformación de tumores de bajo grado en formas más agresivas, lo que podría ayudar a encontrar formas de prevenir esta progresión. Sin embargo, se requieren más investigaciones para probar y validar muestras de pacientes antes de que Patho-DBiT pueda integrarse en los diagnósticos patológicos de rutina.

“Es la primera vez que podemos 'ver' directamente todo tipo de especies de ARN, dónde están y qué hacen, en muestras de tejido clínico”, dijo el Dr. Rong Fan de Yale, autor principal del estudio. “Usando esta herramienta, podemos entender mejor la fascinante biología de cada molécula de ARN, que tiene un ciclo de vida muy rico más allá de simplemente saber si cada gen se expresa o no. Creo que va a transformar por completo la forma en que estudiamos la biología de los humanos en el futuro”.

“Hay millones de estos tejidos que han estado archivados durante tantos años, pero hasta ahora no teníamos herramientas efectivas para investigarlos a nivel espacial”, dijo el primer autor del estudio, el Dr. Zhiliang Bai, asociado postdoctoral en el laboratorio de Fan. “Las moléculas de ARN en estos tejidos que estamos observando están muy fragmentadas y los métodos tradicionales no pueden capturar toda la información importante sobre ellas. Es por eso que estamos muy entusiasmados con Patho-DBiT”.

Miembro Platino
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
Miembro Oro
Prueba rápida de influenza
Influenza A&B Rapid Test Kit

Canales

Química Clínica

ver canal
Imagen: la QIP-MS podría predecir y detectar la recaída del mieloma más temprano en comparación con las técnicas utilizadas actualmente (foto cortesía de Adobe Stock)

Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma

El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Tecnología

ver canal
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.