Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
RANDOX LABORATORIES

Deascargar La Aplicación Móvil




Herramienta de IA supera a los patólogos humanos en la predicción de la supervivencia después del diagnóstico de cáncer colorrectal

Por el equipo editorial de LabMedica en español
Actualizado el 19 Apr 2023

El cáncer colorrectal, el segundo cáncer más letal del mundo, muestra un comportamiento variable incluso entre personas con perfiles de enfermedad similares que se someten al mismo tratamiento. Ahora, un nuevo modelo de inteligencia artificial (IA) puede ofrecer información valiosa a los médicos que hacen pronósticos y determinan tratamientos para pacientes con cáncer colorrectal.

Investigadores de la Facultad de Medicina de Harvard (Boston, MA, EUA) y la Universidad Nacional Cheng Kung (Tainan, Taiwán) han desarrollado una herramienta llamada MOMA (siglas en inglés para Evaluación multiómica de múltiples cohortes) que predice con precisión la agresividad del tumor colorrectal, las tasas de supervivencia del paciente con y sin recurrencia de la enfermedad y la terapia más eficaz mediante el análisis de imágenes de muestras del tumor solo. A diferencia de muchas herramientas de IA existentes que principalmente replican u optimizan la experiencia humana, MOMA identifica e interpreta patrones visuales en imágenes de microscopía que son indetectables para el ojo humano. La herramienta está disponible gratuitamente para investigadores y médicos.

El modelo se entrenó utilizando datos de aproximadamente 2.000 pacientes con cáncer colorrectal de diversas cohortes de pacientes nacionales, con un total de más de 450.000 participantes. Durante el entrenamiento, los investigadores proporcionaron al modelo información sobre la edad y el sexo de los pacientes, el estadio del cáncer y los resultados, así como los perfiles genómico, epigenético, proteico y metabólico de los tumores. Luego, se le dió al modelo la tarea de identificar marcadores visuales relacionados con tipos de tumores, mutaciones genéticas, cambios epigenéticos, progresión de la enfermedad y supervivencia del paciente utilizando imágenes patológicas de muestras de tumores. El desempeño del modelo se evaluó utilizando un conjunto de imágenes de muestras de tumores de diferentes pacientes que no habían sido vistas anteriormente, comparando sus predicciones con los resultados reales de los pacientes y otros datos clínicos.

MOMA predijo con precisión la supervivencia general después del diagnóstico y la cantidad de años libres de cáncer para los pacientes. También anticipó correctamente las respuestas individuales de los pacientes a diversas terapias en función de la presencia de mutaciones genéticas específicas que influyen en la progresión o propagación del cáncer. En ambas áreas, la herramienta superó a los patólogos humanos y los modelos actuales de IA. Los investigadores recomiendan probar el modelo en un ensayo aleatorio prospectivo que evalúe su desempeño en pacientes reales a lo largo del tiempo después del diagnóstico inicial antes de implementarlo en clínicas y hospitales. Tal estudio compararía directamente el desempeño de MOMA en la vida real utilizando solo imágenes con médicos humanos que utilizan conocimientos adicionales y resultados de pruebas no disponibles para el modelo, brindando la demostración estándar de oro de sus capacidades.

"Nuestro modelo realiza tareas que los patólogos humanos no pueden hacer basándose únicamente en la visualización de imágenes", dijo el coautor principal del estudio, Kun-Hsing Yu, profesor asistente de informática biomédica en el Instituto Blavatnik de la Facultad de Medicina de Harvard, quien dirigió un equipo internacional de patólogos, oncólogos, informáticos biomédicos e informáticos. “Lo que anticipamos no es un reemplazo de la experiencia del patólogo humano, sino un aumento de lo que pueden hacer los patólogos humanos. Esperamos que este método aumente la práctica clínica actual del tratamiento del cáncer”.

Enlaces relacionados:
Facultad de Medicina de Harvard
Universidad Nacional Cheng Kung

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a LabMedica.es y acceda a las noticias y eventos que afectan al mundo del Laboratorio.
  • Edición gratuita de la versión digital de Lab Medica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista Lab Medica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Lab Medica en Español digital
  • Boletín de Lab Medica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Química Clínica

ver canal
Imagen: Alcanzando velocidades de hasta 6.000 rpm, esta centrífuga forma la base de un nuevo tipo de prueba biomédica POC económica (Fotografía cortesía de la Universidad de Duke)

Prueba biomédica POC hace girar una gota de agua utilizando ondas sonoras para detección del cáncer

Los exosomas, pequeñas biopartículas celulares que transportan un conjunto específico de proteínas, lípidos y materiales genéticos, desempeñan un papel... Más

Diagnóstico Molecular

ver canal
Imagen: La "piruleta" potencialmente saborizada podría ayudar al diagnóstico del cáncer de boca (Fotografía cortesía de la Universidad de Birmingham)

Nuevo hidrogel inteligente allana el camino para nueva "piruleta" para diagnóstico de cáncer de boca

Actualmente, el proceso de diagnóstico del cáncer oral implica el incómodo paso de insertar una cámara flexible, unida a un tubo, a través de la nariz o la boca para... Más

Hematología

ver canal
Imagen: El dispositivo portátil de bajo costo identifica rápidamente a los pacientes de quimioterapia en riesgo de sepsis (Fotografía cortesía de 52North Health)

Prueba de sangre POC por punción digital determina riesgo de sepsis neutropénica en pacientes sometidos a quimioterapia

La neutropenia, una disminución de los neutrófilos (un tipo de glóbulo blanco crucial para combatir las infecciones), es un efecto secundario frecuente de ciertos tratamientos contra... Más

Inmunología

ver canal
Imagen: El método de prueba podría ayudar a algunos pacientes con cáncer a un tratamiento más efectivo (Fotografía cortesía de 123RF)

Método de prueba podría ayudar a más pacientes recibir tratamiento adecuado contra el cáncer

El tratamiento del cáncer no siempre es una solución única, pero el campo de la investigación del cáncer está dando grandes pasos para encontrar a los pacientes los tratamientos más eficaces para sus afecciones... Más

Microbiología

ver canal
Imagen: El análisis de sangre podría identificar a millones de personas que propagaron la TB sin saberlo (Fotografía cortesía de la Universidad de Southampton)

Análisis de sangre para tuberculosis podría detectar millones de propagadores silenciosos

La tuberculosis (TB) es la enfermedad infecciosa más mortal del mundo y se cobra más de un millón de vidas al año, según informa la Organización Mundial de la Salud.... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.